Appendix B-2e **Geophysical Prove-Out Documentation** This page intentionally left blank. # Final Geophysical Prove-Out Work Plan This page intentionally left blank. # Final Geophysical Prove-Out Work Plan for # MEC Removal Action Bains Gap Fort McClellan, Alabama Task Order 0004 Contract Number: W912DY-04-D-0011 #### Prepared For: # U.S. Army Engineering and Support Center Huntsville, Alabama Prepared By: Tetra Tech EC INC. ## November 2005 The views, opinions, and/or findings contained in this document are those of the author(s) and should not be construed as an official department of the Army position, policy, or decision, unless so designated by other documentation. ## TABLE OF CONTENTS | 1.0 | GPO: | Plan | | | | | | |------|--------------------|-----------------------|------------------------------------|------------------|--|--|--| | | 1.1 | Test Pl | ot Design | | | | | | | | 1.1.1 | Prove-out Size and Location | | | | | | | | 1.1.2 | Seed Items | | | | | | | 1.2 | Site Pr | reparation | | | | | | | 1.3 | Locatio | n Surveying | | | | | | | 1.4 | Backgr | ound Geophysical Mapping | | | | | | | 1.5 | Quality | uality Control | | | | | | | | 1.5.1 | Equipment Warm-up | | | | | | | | 1.5.2 | Record Sensor Position | | | | | | | | 1.5.3 | Personnel Test | | | | | | | | 1.5.4 | Vibration Test (Cable Shake) | | | | | | | | 1.5.5 | Static Background and Static Spike | 1- | | | | | | | 1.5.6 | Height Optimization | | | | | | | | 1.5.7 | Six Line Test | | | | | | | | 1.5.8 | Repeat Lines. | | | | | | | 1.6 | | ly Avoidance | | | | | | | 1.7 | | 2 | | | | | | | 1.8 | | ollection Variables | | | | | | | 1.0 | 1.8.1 | EM61 MK2 | | | | | | | | 1.8.2 | RTS | | | | | | | | 1.8.3 | Constellation | | | | | | | | 1.8.4 | Sensor Configurations | | | | | | | 1.9 | | nalysis and Interpretation | | | | | | | 1.10 | | | | | | | | | | | isition | | | | | | 20 | 1.11 | | valuation | | | | | | 2.0 | GPO Letter Report. | | | | | | | | | 2.1 | Delive | ables | 2- | | | | | | | | APPENDIX A - TABLES | | | | | | | | | | | | | | | Tabl | e Δ-1· (| l eonhysic | al Prove-Out Anomalies | Δ-1 | | | | | Tabl | e A-2. (| Corner Po | nts | A-2 | | | | | ruoi | | comer ro | | | | | | | | | | APPENDIX B - FIGURES | | | | | | | | | | | | | | | Figu | re B-1: | Test Grid | Location | B-1 | | | | | | | | nd Test | W912 | DY-04-F | D-0011, TO | 0004 i | | | | | | | mber 200 | | 55.5Mc | TETRATECH EC, IN | | | | #### LIST OF ACRONYMS CEHNC United States Army Engineering and Support Center, Huntsville EM Electromagnetic Ft Feet **DGPS** Differential Global Positioning System DID Data Item Description Geophysical Prove-Out **GPO** Millivolts Mv Ordnance and Explosives OE PCMCIA P.C. Memory Card International Association Professional land surveyor PLS Quality Assurance QA Quality Control Robotic Total Station QC RTS TDEM Time Domain Electromagnetic UXO Unexploded Ordnance TETRATECH EC, INC. #### CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Arthur B. Holcomb P.E. Program Manager W912DY-04-D-0011 #### 1.0 GPO PLAN The United States Army Engineering and Support Center Huntsville (CEHNC) has contracted Tetra Tech EC Inc. (TtEC), under Contract W912DY-04-D-0011, to perform a Geophysical Prove-Out (GPO) at Fort McClellan located in Anniston, Alabama. It is anticipated that the GPO task will be performed in November of 2005 in order to support the Bains Gap Removal Action (RA). The objective of the GPO is to demonstrate and document the performance of the data acquisition methodology and spatial sampling protocols, sensor(s) and positioning equipment, data analysis and management systems, data transfer procedures, and the geophysical Quality Control (QC) and Quality Assurance (QA) system. The following components of the geophysical system will be evaluated during the GPO field program to ensure the program objectives will be met: - · Spatial sample density (i.e., line and station spacing) - Navigation and positioning methodologies - Sensor and positioning system platform (stability, noise characteristics and ergonomics) - Data processing, analysis and interpretation, management and transfer system - Quality Assurance (QA) Control, documentation protocol for data acquisition, processing and analysis and data management and transfer - The personnel that are going to perform the production geophysical surveyto ensure their ability to meet the data quality objectives. #### 1.1 TEST PLOT DESIGN TtEC constructed a test area at Fort McClellan in August of 2002. This test area has been modified several times, as it has served as a testing area for over three years. In addition to performing GPO's at the test area, TtEC has used the test area to perform quality control and assurance functions following changes in equipment, changes in field personnel, and operational procedures. The following document will refer to the construction of the existing GPO plot and summarize the actions to be performed during the upcoming GPO for the Bains Gap RA. #### 1.1.1 Prove-out Size and Location The existing GPO area is located near the scrap yard off Bains Gap Road (Appendix B Figure B-1). The site is representative of the physical environment to be encountered during geophysical operations during the RA. The area contains two separate test areas; one area is "open" (Test Grid 1) and a dense, wooded area with foliage characterizes Test Grid 2. The wooded area obstructions, trees, and foliage in Test Grid 2 are similar to those to be found in the area of concern near Bains Gap. Test Grid 1 (center) and Test Grid 2 (right edge of photo) Fence near Test Grid 1 A fence is located approximately 30 feet from the northern side of the GPO test plot, as seen in the photo above. This will allow our geophysicist to determine if signal interference from this cultural feature adversely affects the geophysical sensors or positioning equipment. #### 1.1.2 Seed Items The seed items buried at the existing GPO are presented in Appendix A, Table A-1. The seed items are representative of the items that might be encountered during the Bains Gap project. There are fifty inert MEC items buried at depths that range from several inches to several feet (ft). The corner points of Test Grid 1 and Test Grid 2 are demarcated with rebar. Representative GPO seed items 1-2 TETRATECH EC, INC. #### 1.2 SITE PREPARATION #### 1.3 LOCATION SURVEYING TtEC constructed Test Grids 1 and 2 near Bains Gap in August 2002 to meet the requirements of Data Item Description (DID) OE-005-05A.01. The existing GPO remains in accordance with DID Munitions Response (MR) 005-05A. The grid corners for each test grid were located using a high resolution Leica Robotic Total Station (RTS) survey instrument. The control points used for the RTS location survey were developed from pre-existing site monuments, which were established using a Differential Global Positioning System (DGPS) operated by a professional land surveyor (PLS). The PLS was used to determine and/or verify the position of all Test Grid corner points and seed items. Measurements of the seeded items were performed in accordance with DID MR-005-05A. #### 1.4 BACKGROUND GEOPHYSICAL MAPPING The background geophysical survey data for the existing GPO are presented in Appendix B, Figure B-2. #### 1.5 QUALITY CONTROL TtEC-specific instrument and functional checks will be performed at the beginning and end of every data acquisition session for the GPO survey. The TtEC test regimen includes the following: - Acquisition personnel metal check (ensure no metal on acquisition personnel); - Static position system check (accuracy and repeatability of position 0.25 ft tolerance); - Static "background" geophysical sensor check (repeatability of geophysical sensor measurements, influence of ambient noise - +- 2.5 mV tolerance, c2 660 time gate (timegate 3)); - Static "spike" geophysical sensor check (repeatability of geophysical sensor measurements when metal object (i.e. trailer hitch ball) is present - within 20 % of standard response, c2 660 time gate); - Kinematic geophysical sensor check with test item (repeatability and comparability of measurements with sensor in motion) - aka TtEC "cloverleaf" or "rebar" test - align samples to 0.5 ft tolerance; - Repeatability of overall data (re-survey of portion of the survey area during each data acquisition session - ensure background removal is within +-2 mV, and repeatability of peak anomaly intensity within 20 % when position within 0.25 ft); and TETRATECH EC, INC. Occupation (kinematic) of known survey control (e.g., grid corners) during the acquisition session to ensure comparability, accuracy, and repeatability of the positioning systems (1 ft tolerance). In addition to the above tests, an array of required tests will be performed at the commencement of the GPO program. The specific tests and their intervals are specified in DID MR-005-05. The tests include an equipment warm up, verification of sensor offset, personnel test, vibration (cable shake) test, static background and static spike test, height of sensor optimization, six line test, and collection of repeat data. As a quality control function, the GPO area will be used to validate significant changes in operational procedures, as well as changes in equipment, personnel or objectives. The test procedures outlined will be
digitally documented and delivered to the client. All field team members involved in data collection during the RA will be involved with data collection during the GPO to document their ability and efficiency to collect geophysical data as per the standards set forth in DID MR-005-05. #### 1.5.1 Equipment Warm-up The geophysical sensor will be turned on and allowed to run for a minimum of five minutes prior to collecting data. #### 1.5.2 Record Sensor Position The distance between the geophysical sensor and ground surface will be measured and recorded, as well as the offset between the positioning system detector and the geophysical sensor. #### 1.5.3 Personnel Test Field team leaders will be accountable for and ensure that there is no metal (e.g., rings, chains, earrings, knives, wallets, belt buckles, et.) residing on personnel immediately prior to data acquisition activities. #### 1.5.4 Vibration Test (Cable Shake) All cables will be shook in a manner simulating walking in rough terrain. Excessive noise induced from this test will be recorded and the appropriate corrective action(s) implemented (e.g., replace equipment cable, tighten connector, use tension relief device, etc.). 1-4 #### 1.5.5 Static Background and Static Spike The static test involves locating the instrument over a "geophysically quiet" area and recording data for a minimum of three minutes, then placing a steel ball under the instrument and recording an additional three minutes of data. #### 1.5.6 Height Optimization The data acquired at the GPO area will be used to ensure the sensor can reliably detect the smallest MEC item at the required depth. If necessary, the sensor distance above the ground will be decreased in order to meet this objective, while still maintaining an acceptable level of "noise" in the data. #### 1.5.7 Six Line Test The six-line test involves collecting data along a one dimensional profile line six times. The purpose of the line test is to determine "noise" due to system movement/motion as well as potential location errors due to factors associated with system timing. For the first two line paths (1 and 2), data are collected along the line in opposite directions at a normal walking pace with no test item present. A steel ball (or equivalent) is then placed a known location on the path, and data collected along the line in equivalent manner to the first two lines (3 and 4). For the last two line paths, data are collected in one direction at a slow pace, and in the opposite direction at a faster pace (5 and 6). An example of the six-line test is presented in the following. #### Six-line test data W912DY-04-D-0011, TO 0004 November 2005 1-6 #### 1.5.8 Repeat Lines At the end of each data acquisition session, the first line path will be repeated, or a diagonal path will be traversed across the grid that terminates at the start or end of the first line path. #### 1.6 ANOMALY AVOIDANCE Anomaly avoidance techniques were used prior to placing wooden stakes and rebar at each corner and mid point of the test grids at the GPO area. #### 1.7 SEEDING The inert MEC items presently located in Test Grid 1 at the GPO area are specified in Table A-1. These items were provided by CEHNC and were buried by TtEC personnel. All of the seeded items are inert MEC and painted blue and tagged with a non-biodegradable label identifying the item as inert and providing a reference of contact information. The following procedures were performed to seed Test Grid 1: - 1. Inert items were labeled and photographed prior to burial. - 2. Holes were dug with a shovel and/or a small backhoe. - 3. The seed items were placed in the respective hole and the depth measured to the top of each item using a metal bar placed across the hole at ground level for reference. For larger seed items (e.g., 2.36 inch rocket) the depth was measured at the nose, tail and center point. - 4. The location of the centroid of each item was then determined by using a high-resolution laser-based positioning system (Arc Second Constellation). Location survey of a seed item in the open hole (Constellation) 5. The items were buried with one end of the metal bar on the item, and the dirt replaced in the hole. The metal bar was then removed.. #### 1.8 DATA COLLECTION VARIABLES Based on our previous experience at numerous UXO sites including Ft. McClellan, the EM61 MK2 TDEM geophysical sensor exhibits the greatest potential to meet the project objectives. Based on the physical features present at the area of interest, laser-based positioning methods (RTS and Constellation) have the highest probability of providing accurate coordinate locations for the geophysical measurements. #### 1.8.1 EM61 MK2 The Geonics Limited EM61 MK2 utilizes two coaxial receiver coils to measure the residual magnetic field generated by conductive and/or magnetic materials. The sensor electronics are designed to measure the residual magnetic field at a time when the response from conductive and/or magnetic objects is maximized, compared to the response from most earth materials. The use of two receiver coils also makes it possible to differentiate, in a simplistic fashion, shallow versus deep objects. An additional benefit of the specific design of the EM61 MK2 system is that it permits a more focused observation of the subsurface in areas of cultural interference, as well as in areas characterized by a high spatial density of subsurface metal objects. This is due to the mechanical design and operational parameters of the instrument, as well as the inherent nature of active electro-magnetic (EM) fields, which diminish in magnitude at a much higher rate than other sensor technologies such as magnetometry. The EM61 MK2 utilizes multiple time-gates centered at 216, 366, 660, and 1,266 µs. The signal intensity for a given ferrous target recorded by the earlier time-gates is generally a factor of 2 to 4 times that recorded by the standard EM61 MK1 time-gate. This feature facilitates a more reliable and repeatable interpretation of smaller targets such as 37mm projectiles. #### 1.8.2 RTS The Leica Geosystems 1105 or 1200 RTS is a laser-based positioning system that utilizes line-of-site to accurately determine the position of a 360-degree prism that is mounted at a known offset from the geophysical sensor. The RTS continuously records the position of the prism at a rate of approximately 3-4 Hz as it is transported across the area of interest. Coordinate and time of measurement data are stored on a PCMCIA device on the RTS, and uploaded to the processing computer a minimum of once per day. #### 1.8.3 Constellation The Arc Second Constellation is a laser-based positioning system that consists of four laser transmitters and a field computer for logging the position data via wireless modem. Four Trimble Spectra Precision LS920 Laser Transmitters are positioned in a diamond or square geometry over 1/4 to 1 acre depending upon the density of obstacles present (e.g., trees). The transmitters are leveled, and an automatic routine calculates the relative x-y-z- plane between the transmitters to a tolerance of one inch or less. A laser detector "wand" (i.e., receiver) is centered over the EMII MK2 coils on a TtEC-designed fiberglass "doghouse" (or equivalent). The detector wand receives the laser pulses from the four transmitters simultaneously, and computes a position based on the known position of the laser transmitters. Only two of the laser transmitters are necessary to compute a reliable position to a relative accuracy of approximately one inch. The position data are updated at 2-3 Hz and sent via wireless modem to the field computer for storage and display. #### 1.8.4 Sensor Configurations Due to the physical features present in the area of interest, the EM61 MK2 geophysical sensor will be integrated with the RTS and Constellation positioning systems. Based on our past site-specific experience at Fort McClellan, the RTS is the preferred positioning system in generally "open" areas, and the Constellation will provide positioning in the parcels at the site that are moderate to densely wooded. Based on past testing performed in the Bains Gap area by TtEC in 2001, DGPS is not the preferred positioning method (even in generally "open" areas) due to the presence of tall trees at the borders of the survey area, which degrade the GPS satellite signals. The specific system configurations that will be tested at the existing GPO grid include the following: # Instrument Coils Time Gates Positioning Line Spacing (ft.) EM61 MK2 1m by 1m 216 μs, 366 μs, 660 μs Constellation ~2.5 EM61 MK2 1m by 1m 216 μs, 366 μs, 660 μs RTS ~2.5 #### **GPO Instrument Configurations** The physical features present at Test Grid 1 are representative of the "open" areas at the Bains Gap area of interest, and this area will be used to prove-out the EM61 MK2 and the RTS positioning system. A Juniper Allegro data recorder will be used to record the EM61 MK2 measurements at a rate of 12-15 Hz, and the RTS will be configured to record position measurements at a rate of approximately 3-4 Hz. The spacing between adjacent data acquisition transects will be ~ 2.5 ft. The physical features present at Test Grid 2 (i.e., woods) will be used to validate the positioning accuracy of the Constellation system; a secondary objective at Test Grid 2 is to ensure that the data acquisition platform (i.e., integrated EM61 MK2 and Constellation system electronics) are integrated to record measurements that can meet the project objectives. Placing several metal items on the ground surface at known locations, and collecting geophysical data over the entire area will validate the Constellation positioning system for project use. A Juniper Allegro data recorder will be used to record the EM61 MK2 measurements at a rate of 12-15 Hz, and the Constellation will be configured to record position measurements at a rate of approximately 3-4 Hz. The spacing between adjacent data
acquisition transects will be $\sim 2.5 \, \mathrm{ft}$. The EM61 MK2 lower coil height will be adjusted so that it remains at a height of 16 inches (+1 inch) above the ground surface. The height of the lower coil will be measured prior to each data acquisition session to ensure repeatability between different team members and different data acquisition sessions. The man-portable (MP) "skirt" mode will be used during the GPO. In the TtEC man-portable configuration, two operators will be used to collect the geophysical data. One person transports the EM61 MK2 coils and positioning system detector while the other person, walking approximately ten ft behind, carries the EM61 MK2 electronics, Juniper Allegro data recorder, and the positioning system electronics (there are no electronics for the RTS configuration). The positioning system detector will be centered above the EM61 MK2 coils for both the RTS and Constellation system configurations. #### 1.9 DATA ANALYSIS AND INTERPRETATION Geophysical measurements and position data will be stored on digital media during data acquisition. After acquisition over the test grid is complete, data will be transferred to the site-processing center for initial data processing and evaluation. A TtEC geophysicist will perform preliminary geophysical and position data processing and QC checks in the field. The final analysis and interpretation of the data will be performed at a centralized processing center located at the TtEC Lakewood, Colorado or at the on-site TtEC field office. Processing, QC, analysis and interpretation of the data will be performed with internally developed software that has been specifically produced to integrate and assess digital geophysical data acquired with the RTS and Constellation positioning systems. These processed data are output to Geosoft Oasis Montaj Mapping software (version 6.2) to create color-coded images of sensor intensity for interpretation. All data channels of the EM61 MK2 will be analyzed to ensure the most comprehensive data interpretation. In general, the post processing that will be performed includes removal of instrument bias, removal of timing errors (i.e., lag), and removal of geophysical sensor drift. Data will be recorded or transferred into the requested coordinate system (State plane zone Alabama North, NAD83). All data processing parameters are stored in digital files (*.chk) or in the Oasis Montaj log file (*.log). Data will be interpreted at the processing center and a Microsoft Excel digsheet generated that is compatible with DID MR-005-05. This digsheet will be provided to the client project team for evaluation and scoring. The digsheet will also be provided to reacquisition personnel along with a color-coded image of sensor intensity for the target reacquisition phase of the GPO. #### 1.10 REACQUISITION The TtEC reacquisition team will perform reacquisition of the interpreted geophysical anomalies using the digsheet. The RTS and Constellation positioning systems will be used by reacquisition personnel to validate both of these systems for project use. A hand held sensor (Vallon VMH3C, Minelab Explorer) or equivalent will be used by personnel to pinpoint the target specified on the digsheet, and these coordinates will be stored by the respective positioning system and/or recorded on the digsheet. The coordinates of the reacquired position will be compared to the interpreted coordinates on the digsheet to ensure the requirements in DID MR-005-005 are achieved; the requirement states that 95% of the reacquired locations shall fall within 1 meter of the target location as specified by the interpreter on the digsheet. The Vallon and Minelab hand held TDEM systems use the same electronic technology as the EM61 MK2 system. #### 1.11 DATA EVALUATION Data will be evaluated with respect to the number of seed items detected by each instrument configuration, production rate, and equipment reliability, functionality overall ease of use. The spatial sample density and "noise" level of each instrument configuration will be evaluated to ensure the data are of sufficient quantity and quality to meet the project objectives. Based on our past experience and the project objectives, the distance between adjacent acquisition tracks should not exceed 3.3 ft, and the kinematic "noise" level for the c2_660 time gate (time gate 3) should be less than 4 mV (peak to peak) in "background" areas. TETRATECH EC. INC. 1-11 #### 2.0 GPO LETTER REPORT #### 2.1 DELIVERABLES The results of the GPO will be submitted in the GPO letter report in tabular and graphical form. The GPO Letter report will include, at a minimum, the following information: - As-built drawing of the GPO plot; - Pictures of the seed items; - Color maps of the geophysical data; - · Summary of the GPO results; - · Proposed geophysical equipment, techniques, and methodologies; and - Sufficient supporting information to justify the project team's recommendations, including manufacturer specifications for all recommended geophysical equipment, a definition of the expected target anomalies based upon the Archives Search Report, Site Inspection Report, Remedial Investigation/Feasibility Study or Engineering Evaluation/Cost Analysis results, or any other pertinent data/information used in decision making. A CD shall be delivered with the letter report containing the following files: - · The GPO Letter Report (Microsoft Word format); - All raw and processed geophysical data. All data, except raw instrument data, shall be provided in column delineated ASCII files in the format x, y, z, v1, v2, etc., where x and y are State Grid Plane Coordinates in Easting (meters) and Northing (meters) directions, z (elevation) is an optional field in meters, and v1, v2, v3, etc., are the instrument readings. The last data field will be a time stamp. Each data field will be separated by a comma or tab. - Geophysical maps in their native format (Surfur®, Geosoft Oasis montaj™, Intergraph, or ESRI AreView format) and/or as raster bit-map images such as BMP, JPEG, TIFF or GIF; - · Seed item location spreadsheet (Microsoft Excel format); - Spreadsheet (Microsoft Excel format) of contractor picks for each sensor type, including reacquisition; and - Spreadsheet (Microsoft Excel format) of all control points, survey points and benchmarks established or used during the Location Surveying task. TE TETRATECH EC, INC. The GPO Letter Report and Contracting Officer Approval Letter shall be included in geophysical reports and work plans associated with the survey area. 2-2 #### APPENDIX A TABLES TABLE A-1: GEOPHYSICAL PROVE-OUT SEED ITEMS - Test Grid 1 | X | Y | Target ID | Item | Depth(in) | Inclination | |-----------|------------|-----------|----------------|-----------|-------------| | 677699.94 | 1167164.58 | al | 37mm | 4.00 | Horizontal | | 677708.37 | 1167173.14 | a2 | 37mm | 4.00 | Vertical | | 677719.73 | 1167188.12 | a3 | 81mm | 34.00 | Horizontal | | 677721.10 | 1167175.99 | a4 | 2.36" rocket | 26.00 | Horizontal | | 677730.10 | 1167179.32 | a5 | rocket motor | 12.00 | Horizontal | | 677723.37 | 1167167.69 | a6 | 37mm | 16.00 | Horizontal | | 677735.00 | 1167169.03 | a7 | 60mm | 12.00 | Vertical | | 677735.62 | 1167156.66 | a8 | MKII HG | 8.00 | Vertical | | 677745.30 | 1167155.03 | a9 | 2.36" rocket | 6.00 | Vertical | | 677743.41 | 1167136.92 | a10 | Anti Tank Mine | 6.00 | Horizontal | | 677726.67 | 1167132.67 | all | 60mm | 6.00 | Vertical | | 677718.25 | 1167118.37 | a12 | MKII HG | 4.00 | Horizontal | | 677719.58 | 1167146.36 | a13 | 37mm | 0.00 | Horizontal | | 677688.23 | 1167097.99 | al4 | 3 "stokes | 20.00 | Horizontal | | 677704.27 | 1167108,58 | a15 | 3 "stokes | 32.00 | Horizontal | | 677694.61 | 1167113.24 | a16 | 75mm | 30.00 | Horizontal | | 677709.18 | 1167133.61 | a17 | 60mm | 25.00 | 45 degrees | | 677691.87 | 1167128.25 | a18 | 75mm | 12.00 | Vertical | | 677681.35 | 1167118.85 | a19 | MKII HG | 14.00 | Horizontal | | 677673.49 | 1167132.86 | a20 | 75mm | 18.00 | 45 degrees | | 677666.45 | 1167141.88 | a21 | 37mm | 4.00 | 45 degrees | | 677680.90 | 1167152.03 | a22 | slap flare | 4.00 | 45 degrees | | 677706.20 | 1167151.98 | a23 | 105mm | 45.00 | 45 degrees | | 677753.84 | 1167216.57 | a24 | 37mm | 4.00 | Horizontal | | 677765.13 | 1167208.06 | a25 | 37mm | 4.00 | Vertical | | 677771.70 | 1167196.19 | a26 | 81mm | 17.00 | Horizontal | | 677771.95 | 1167190.79 | a27 | 2.36" rocket | 26.00 | Horizontal | | 677781.41 | 1167187.60 | a28 | rocket motor | 12.00 | Horizontal | | 677794.28 | 1167178.14 | a29 | 37mm | 16.00 | Horizontal | | 677775.16 | 1167162.11 | a30 | 60mm | 12.00 | Vertical | | 677767.82 | 1167173.71 | a31 | MKII HG | 8.00 | Vertical | | 677763.33 | 1167167.94 | a32 | 2.36" rocket | 6.00 | Vertical | | 677750.42 | 1167179.97 | a33 | 60mm | 6.00 | Horizontal | | 677756.51 | 1167195.77 | a34 | 60mm | 6.00 | Vertical | | 677740.94 | 1167197.48 | a35 | MKII HG | 4.00 | Horizontal | | 677741.04 | 1167180.67 | a36 | 37mm | 0.00 | Horizontal | | 677728.58 | 1167178.52 | a37 | 3 "stokes | 20.00 | Horizontal | | 677733.40 | 1167171.79 | a38 | 3 "stokes | 32.00 | Horizontal | | 677743.27 | 1167161.79 | a39 | 75mm | 30.00 | Horizontal | | 677758.76 | 1167148.27 | a40 | 81mm | 25.00 | 45 degrees | | 677697.46 | 1167163.21 | a41 | 75mm | 12.00 | Vertical | | 677699.23 | 1167155.70 | a42 | MKII HG | 0.00 | Horizontal | | 677700.11 | 1167144.91 | a43 | 75mm | 18.00 | 45 degrees | | 677715.77 | 1167137.08 | a44 | 37mm | 4.00 | 45 degrees | | 677715.85 | 1167112.69 | a45 | slap flare | 4.00 | Vertical | W912DY-04-D-0011, TO004 November 2005 TE TETRATECHEC, INC. A-1 | Table A-1: Geophysical Prove-Out Seed Items
(Continued) | | | | | | |--|------------|-----------|--------------|------------|-------------| | X | Y | Target ID | Item | Depth (in) | Orientation | | 677706.94 | 1167104.36 | a46 | 105mm | 10.00 | Vertical | | 677693.62 |
1167134.69 | a47 | 81mm | 34.00 | Vertical | | 677683.47 | 1167133.54 | a48 | rocket motor | 12.00 | Vertical | | 677680.56 | 1167145.54 | a49 | 3 "stokes | 20.00 | Vertical | | 677674.37 | 1167119.69 | a50 | 37mm | 2.00 | Horizontal | TABLE A-2: GEOPHYSICAL PROVE-OUT CORNER POINTS and MIDPOINTS Test Grid 1 (ft) | Corner Point | X ft | Yft | |--------------|-----------|------------| | SW | 677693.96 | 1167088.76 | | SE | 677796.54 | 1167176.86 | | NE | 677753.19 | 1167226.71 | | NW | 677651.45 | 1167138.05 | | Ml | 677762.26 | 1167147.30 | | M2 | 677728.18 | 1167117.92 | | M3 | 677685.25 | 1167167.49 | | M4 | 677719.52 | 1167196.53 | Test Grid 2 (ft) | Corner Point | X ft | Yft | |--------------|----------|-----------| | SW | 677825.1 | 1167325.0 | | SE | 677868.1 | 1167300.0 | | NE | 677911.9 | 1167375.0 | | NW | 677869.0 | 1167401.0 | TtEC proposes placing four inert 37mm projectiles (or larger) items on the surface at the following locations in Test Grid 2: | Item | X ft | Yft | |------|----------|-----------| | 37mm | 677846.0 | 1167337.0 | | 37mm | 677877.0 | 1167362.0 | | 37mm | 677885.0 | 1167330.0 | | 37mm | 677871.0 | 1167393.0 | W912DY-04-D-0011, TO004 November 2005 A-2 APPENDIX B FIGURES FIGURE B-2: BACKGROUND TEST (Test Grid 1) W912DY-04-D-0011, TO 0004 November 2005 TE TRIMTECH IC.P B-2 This page intentionally left blank. # Final Geophysical Prove-Out Letter Report This page intentionally left blank. ## Final Geophysical Prove-Out Letter Report for # MEC Removal Action Bains Gap Fort McClellan, Alabama Task Order 0004 Contract Number: W912DY-04-D-0011 Prepared For: # U.S. Army Engineering and Support Center Huntsville, Alabama Prepared By: Tetra Tech EC INC. #### March 2006 The views, opinions, and/or findings contained in this document are those of the author(s) and should not be construed as an official department of the Army position, policy, or decision, unless so designated by other documentation. #### CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Arthur B. Holcomb P.E. AB Holiont Program Manager TETRATECH EC, INC. #### TABLE OF CONTENTS | 1.0 | INTRODUCTION | 1 | | | | |-----|-------------------------------------|---|--|--|--| | 2.0 | OBJECTIVE | | | | | | 3.0 | LOCATION | 1 | | | | | 4.0 | EQUIPMENT | | | | | | | 4.1 EM61 MK2 | 2 | | | | | | 4.2 Constellation | | | | | | | 4.3 Robotic Total Station | | | | | | | 4.4 Seed Items | | | | | | 5.0 | PROCEDURES | | | | | | | 5.1 Data Acquisition. | | | | | | | 5.2 Data Processing | 3 | | | | | | 5.3 Data Interpretation | 4 | | | | | | 5.4 Reacquisition | | | | | | | 5.5 Quality Control | | | | | | | 5.6 Static Tests | | | | | | | 5.7 Six-Line Tests | | | | | | | 5.8 Positioning Tests | | | | | | | 5.9 Personnel and Shake Tests | | | | | | | 5.10 Results | 5 | | | | | 6.0 | CONCLUSIONS AND RECOMMENDATIONS | | | | | | | 6.1 Conclusions and Recommendations | 6 | | | | #### LIST OF APPENDICIES Appendix A Test Grid Location Appendix B Background Test Grid Appendix C Tables Appendix D Static Test Appendix E Six Line Test Appendix F Test Grid As-Built Drawings Appendix G RTS and Constellation Tests Contract W912DY-04-D-0011, TO 004 March 2006 ii #### 1.0 INTRODUCTION The United States Army Engineering and Support Center, Huntsville (USAESCH) has contracted Tetra Tech EC Inc. (TtEC) under Contract W912DY-04-D-0011, to perform a Geophysical Prove-Out (GPO) at Fort McClellan located in Anniston, Alabama. The GPO was performed on February 1st, 2006 to demonstrate the geophysical equipment and procedures to be used for the geophysical survey during the Bains Gap Removal Action (RA). The Geophysical Prove-Out Work Plan provides the details of the approach, methods and operational procedures used at the GPO. #### 2.0 OBJECTIVE The objective of the GPO is to demonstrate and document the performance of the data acquisition methodology and spatial sampling protocols, sensor(s) and positioning equipment, data analysis and management systems, data transfer procedures, and the geophysical Quality Control (QC) and Quality Assurance (QA) system. The following components of the geophysical system were evaluated during the GPO field program to ensure the program objectives will be met: - · Spatial sample density (i.e., line and station spacing) - Navigation and positioning methodologies - Sensor and positioning system platform (stability, noise characteristics and ergonomics) - · Data processing, analysis and interpretation, management and transfer system - Quality Assurance (QA) Control, documentation protocol for data acquisition, processing and analysis and data management and transfer - The personnel that are going to perform the production geophysical survey also perform the GPO to ensure their ability to meet the data quality objectives. #### 3.0 LOCATION The GPO area is located near the scrap yard off of Bains Gap Road (see Appendix A). The GPO area is representative of the environment encountered during geophysical operations at Fort McClellan including wooded areas, tree lines, roads, high brush, cultural features and open areas. The area contains two separate test areas; one area is "open" (Test Grid 1) and a dense, wooded area with foliage characterizes Test Grid 2. The wooded area obstructions, trees, and foliage in Test Grid 2 are similar to those to be found in the area of concern near Bains Gap. Contract W912DY-04-D-0011, TO 004 March 2006 #### 4.0 EQUIPMENT Based on our previous experience at numerous UXO sites including Ft. McClellan, the EM61 MK2 TDEM geophysical sensor exhibits the greatest potential to meet the project objectives. Based on the physical features present at the area of interest, laser-based positioning methods (RTS and Constellation) have the highest probability of providing accurate coordinate locations for the geophysical measurements. #### 4.1 EM61 MK2 The Geonics Limited EM61 MK2 is a high sensitivity high resolution time-domain metal detector which is used to detect both ferrous and non-ferrous metallic objects. It consists of a powerful transmitter that generates a pulsed primary magnetic field, which induces eddy currents in nearby metallic objects. The decay of these currents is measured by two receiver coils mounted on the coil assembly. The EM61 MK2 utilizes two coaxial receiver coils to measure the residual magnetic field generated by conductive and/or magnetic materials. The sensor electronics are designed to measure the residual magnetic field at a time when the response from conductive and/or magnetic objects is maximized, compared to the response from most earth materials. The use of two receiver coils also makes it possible to differentiate, in a simplistic fashion, shallow versus deep objects. An additional benefit of the specific design of the EM61 MK2 system is that it permits a more focused observation of the subsurface in areas of cultural interference, as well as in areas characterized by a high spatial density of subsurface metal objects. This is due to the mechanical design and operational parameters of the instrument, as well as the inherent nature of active electro-magnetic (EM) fields, which diminish in magnitude at a much higher rate than other sensor technologies such as magnetometry. The EM61 MK2 utilizes multiple time-gates centered at 216, 366, 660, and 1,266 µs. The signal intensity for a given ferrous target recorded by the earlier time-gates is generally a factor of 2 to 4 times that recorded by the standard EM61 MK1 time-gate. This feature facilitates a more reliable and repeatable interpretation of smaller targets such as 37mm projectiles. #### 4.2 CONSTELLATION The Arc Second Constellation is the positioning system that will be utilized in the medium to heavily wooded areas. The Arc Second Constellation is a laser-based positioning system that consists of four laser transmitters and a field computer for logging the position data via wireless modem. Four Trimble Spectra Precision LS920 Laser Transmitters are positioned in a diamond or square geometry over 1/4 to 1 acre depending upon the density of obstacles present (e.g., trees). The transmitters are leveled, and an automatic routine calculates the relative x-y-z- plane between the transmitters to a tolerance of one inch or less. A laser detector "wand" (i.e., receiver) is centered over the EMII MK2 coils on a TtEC-designed fiberglass "doghouse" (or equivalent). The detector wand receives the laser pulses from the four transmitters simultaneously, and computes a position based on the known position of the laser transmitters. Only two of the laser transmitters are necessary to compute a reliable position to a relative accuracy of approximately one inch. The position data are updated at 2-3 Hz and sent via wireless modem to the field computer for storage and display. Contract W912DY-04-D-0011, TO 004 March 2006 2 #### 4.3 ROBOTIC TOTAL STATION The RTS will be utilized as the positioning method, as needed, in areas that are open, or lightly wooded. The Leica Geosystems 1105 RTS is a laser-based positioning system that utilizes line-of-site to accurately determine the position of a 360-degree prism that is mounted at a known offset from the geophysical sensor. The RTS continuously records the position of the prism at a rate of approximately 3-4 Hz as it is transported across the area of interest. Coordinate and time of measurement data are stored on a PCMCIA
device on the RTS, and uploaded to the processing computer a minimum of once per day. #### 4.4 SEED ITEMS The seed items buried at the existing GPO are presented in Appendix C, Table 1. The seed items are representative of the items that might be encountered during the Bains Gap project. There are fifty inert MEC items buried at depths that range from several inches to several feet (ft). Photographs of the seeded items will be submitted on a CD-ROM. For the wooded test grid, hand-held instruments were used to remove any subsurface metal. A background survey of the wooded test grid was subsequently performed and is presented in Appendix B. The wooded test grid was seeded with 11 scrap metal items on the surface to ascertain the positional accuracy of the Constellation system. The as-built drawings for the test grids can be found in Appendix F. #### 5.0 PROCEDURES #### 5.1 DATA ACQUISITION The open test grid was surveyed twice during the GPO, once using the RTS and once using the Constellation. The wooded test grid was surveyed using the Constellation. For each of the surveys, data was acquired at a line spacing of 2.5 ft and at a sample rate of 12-15 times per second. The along line sampling is between 3.0 and 4.0 samples/ft depending on the operator's speed, which can vary slightly based on terrain. Prior to starting the acquisition session, the coil height was measured to 16 inches above ground level. Shake tests were performed to verify that all cables were secure in position. All four channels were electronically nulled to zero in a magnetically "quiet" area using the Geonics MKII acquisition software. Following these procedures, static and dynamic data were recorded to facilitate shift and drift corrections. The operators who will be acquiring data in the field collected the data in the GPO. #### 5.2 DATA PROCESSING Data were stored on PCMCIA cards or a laptop computer during data acquisition. After data acquisition was completed at each test grid, data was transferred to the site laptop PC for processing. A TtEC geophysicist performed preliminary geophysical and navigation data processing and Quality Control (QC) checks. The final analysis and interpretation of the data was performed at the TtEC processing center at Ft. McClellan, Alabama. Processing was performed with internally developed software that has been specifically produced to integrate and interpret digital geophysical data acquired with the RTS and Constellation Positioning Systems. Geosoft Oasis Montaj Mapping software was also used to graphically display data and select targets. Data transfer was fully tested during the GPO. This included the transfer of raw Contract W912DY-04-D-0011, TO 004 March 2006 EM and positioning data. Corrected and leveled processed data were converted to space delimited ASCII format and delivered to USACE. #### 5.3 DATA INTERPRETATION All anomalies detected during each of the test grid surveys were selected as potential targets for intrusive investigation. The horizontal 37mm at 16 inches will be the smallest signature item to use for a lower threshold for "digs". The 37mm had a response of 8.3 mV on the 216us time gate and 5.4 mV on the 366 us time gate, and is visible on 2 adjacent acquisition lines. Although it is not anticipated to encounter a 37mm at 16 inches, TtEC will be conservative in the selection process. It is anticipated that the minimum dig selection criteria will be a 3 to 5 mV response on the 366 us time gate and/or 6 to 8 mV on the 216 us time gate, visibile on 2 adjacent lines, and a response higher on the upper coil than the lower coil (660 us time gate), if the noise levels permit. ### 5.4 REACQUISITION The RTS was used for target reacquisition. Because 92% of the interpreted anomaly locations in the open GPO are within the DID 35cm requirement, and 100% of the interpreted locations are within the DID requirement in the wooded GPO, it is recommended that a hand held instrument not be used during reacquisition and the dig teams dig the interpreted anomaly flag location. This will prevent the reacquisition team from inadvertently mis-positioning the intended anomaly location. The intrusive teams are to record the offset from flagged locations and actual locations. TtEC will utilize the feedback process in a timely fashion to ensure that we are in fact intrusively investigating the interpreted geophysical anomalies, and should discrepancies start to occur, reacquisition will be one of the factors re-evaluated (as well as geology, EM navigation, positioning, etc). #### 5.5 QUALITY CONTROL Instrument and functionality checks were performed at the beginning and end of every data acquisition session during the GPO. Independent QC tests performed included personnel and shake tests, static test, 6-line test, and positioning test. ### 5.6 STATIC TESTS The static test involved locating the instrument over a quiet area and recording data for 5 minutes, then placing a spherical item under the instrument and recording an additional 5 minutes of data. Each of the instrument configuration static tests showed normal background noise levels (0 to 2 mV for the bottom coil and 0 to 4 mV for the upper coil. Slight variations were due to normal instrument noise and the operator reacting to the many insects swarming around which caused slight movement due to slapping motions. The operator moving caused noise below the inherent system noise (movement noise in the order of 0.1-0.15 mV) therefore would not effect field operations. The figures located in Appendix D represent the static calibration and static response. The purpose is to inspect the consistency of the instrument response throughout the course of the project. ### 5.7 SIX-LINE TESTS The six-line test (see Appendix E) involved collecting data along a 60-foot line six times. The purpose of this line test was to determine noise due to system movement/motion as well as location error caused by temporal time lag or spatial correction due to waypoint placement. For the first two line tests, data was collected along the line in each direction (Lines 1 and 2) at a normal pace with no item present. Lines 3 and 4 were collected (with the item in place) at a normal pace, followed by lines 5 and 6 collected at a fast pace and a slow pace, respectively. There was no appreciable noise increase from the tests nor was there appreciable position lag errors with the exception of the fast line on the open test grid. The coil operator walked so fast that the RTS was unable to keep up and did not record any positions along this line. This is not a concern, as the data acquisition team will not be collecting data at this fast speed. The test was performed along the east side of the test grid. #### 5.8 Positioning Tests To test the positioning, the EM61 MK2 and navigation unit recorded data over the northeast corner of the test grid. After data processing, the geophysical position data was compared to the survey data to ensure that the positions were the same. #### 5.9 PERSONNEL AND SHAKE TESTS The coil operator was checked for metallic objects that may interfere with the EM signal. The cables were then shaken and the allegro monitored for noise. The coil operator also did some moving around while the data was monitored. No noise was detected during these tests. #### 5.10 RESULTS In the open test grid using the RTS, the data collection procedures are very good. The data navigation (line spacing) is excellent (no data gaps), and the positioning is very accurate as well. All 4 of the EM61 MK2 data channels have very low noise (<1.0mV). All of the interpreted anomaly locations were within 1 meter of the actual seed item location (100%), and 46 of 50 (92%) interpreted anomaly locations were within 35cm of the actual locations. The 4 seed items outside of 35cm are two 2.36" rockets at 26" depth, a 60mm at 25" depth, and a 37 mm next to a 75mm (2.75 feet away). A color-coded map of the geophysical data for the open test grid (366 us time-gate) is presented in Appendix G. In the wooded test grid using the Constellation, the data collection procedures and equipment are also very good. The navigation (line spacing) is very good and the only data gaps are due to trees. The positioning is sufficient to meet the project objectives. The constellation timing issues appear to be affecting the positioning of the EM data. At its worst, the positioning errors are ~1.0 to 1.5 feet. This timing issue is inherent with this system and there is not much that can be done to correct these errors. The data processor and data interpreter will need to be aware of it during interpretation and account for it where possible. All of the seed items were interpreted and reacquired to within 35 cm of their actual location. The noise levels on the bottom coil are very low, although the top coil has more noise than what was seen in the open grid using the RTS. Because the "wand" cable was attached for all of the GPO test grids (RTS and Constellation) it appears that the noise is not due to the cable itself, but the signal coming through the cable when the wand is active. The noise is not significant, (3 to 4 mV when present) but some testing will be performed to see if it can be reduced (e.g., move the cable away from the coil). A color-coded map of the geophysical data for the wooded test grid (366 us timegate) is presented in Appendix G. The results of the open test grid utilizing the Constellation were very similar to the results of the open test grid utilizing the RTS. All of the seed items were detected with the same degree of accuracy. A color-coded map of the geophysical data for the open test grid (366 us time-gate) utilizing the Constellation positioning is presented in Appendix G. #### 6.0 CONCLUSIONS AND RECOMMENDATIONS #### 6.1 CONCLUSIONS AND RECOMMENDATIONS The GPO test grids at Fort McClellan are a very good indication of the types of areas that will be surveyed during the removal action. It is
anticipated that trees, cultural features and open areas will all be encountered during the geophysical survey. The items seeded in the prove-out are also representative of the items to be encountered during the investigation. The GPO was conducted to demonstrate and document the performance of the proposed data acquisition methodology (including personnel) and spatial sampling protocols, sensor(s) and positioning equipment, data analysis and management systems, data transfer procedures, and the geophysical Quality Control (QC) system. Based on the results of the GPO, the EM61 MK2, coupled with either the RTS in the open areas, or the Constellation in the wooded areas, and utilizing the procedures described in the GPO Work Plan, demonstrated the ability to meet the program objectives. Because the interpretation position accuracy is very good, TtEC will not utilize a handheld sensor during target reacquisition and will instead dig the interpreted location. TtEC will need to continually to utilize the feedback process to ensure anomaly recovery. # APPENDIX A TEST GRID LOCATION # APPENDIX B BACKGROUND TEST GRID Contract W912DY-04-D-0011, TO 004 March 2006 B-1 Contract W912DY-04-D-0011, TO 004 March 2006 B-2 ## APPENDIX C **TABLES** | X | Y | TARGET ID | ITEM | DEPTH(IN) | ORIENTATION | |-----------|------------|-----------|----------------|-----------|-------------| | 677699.94 | 1167164.58 | al | 37mm | 4.00 | Horizontal | | 677708.37 | 1167173.14 | a2 | 37mm | 4.00 | Vertical | | 677719.73 | 1167188.12 | a3 | 81mm | 34.00 | Horizontal | | 677721.10 | 1167175.99 | a4 | 2.36" rocket | 26.00 | Horizontal | | 677730.10 | 1167179.32 | a5 | rocket motor | 12.00 | Horizontal | | 677723.37 | 1167167.69 | a6 | 37mm | 16.00 | Horizontal | | 677735.00 | 1167169.03 | a7 | 60mm | 12.00 | Vertical | | 677735.62 | 1167156.66 | a8 | MKIIHG | 8.00 | Vertical | | 677745.30 | 1167155.03 | a9 | 2.36" rocket | 6.00 | Vertical | | 677743.41 | 1167136.92 | a10 | Anti Tank Mine | 6.00 | Horizontal | | 677726.67 | 1167132.67 | a11 | 60mm | 6.00 | Vertical | | 677718.25 | 1167118.37 | a12 | MKIIHG | 4.00 | Horizontal | | 677719.58 | 1167146.36 | a13 | 37mm | 0.00 | Horizontal | | 677688.23 | 1167097.99 | a14 | 3 "stokes | 20.00 | Horizontal | | 677704.27 | 1167108.58 | a15 | 3 "stokes | 32.00 | Horizontal | | 677694.61 | 1167113.24 | a16 | 75mm | 30.00 | Horizontal | | 677709.18 | 1167133.61 | a17 | 60mm | 25.00 | 45 degrees | | 677691.87 | 1167128.25 | a18 | 75mm | 12.00 | Vertical | | 677681.35 | 1167118.85 | a19 | MKIIHG | 14.00 | Horizontal | | 677673.49 | 1167132.86 | a20 | 75mm | 18.00 | 45 degrees | | 677666.45 | 1167141.88 | a21 | 37mm | 4.00 | 45 degrees | | 677680.90 | 1167152.03 | a22 | slap flare | 4.00 | 45 degrees | | 677706.20 | 1167151.98 | a23 | 105mm | 45.00 | 45 degrees | | 677753.84 | 1167216.57 | a24 | 37mm | 4.00 | Horizontal | | 677765.13 | 1167208.06 | a25 | 37mm | 4.00 | Vertical | | 677771.70 | 1167196.19 | a26 | 81mm | 17.00 | Horizontal | | 677771.95 | 1167190.79 | a27 | 2.36" rocket | 26.00 | Horizontal | | 677781.41 | 1167187.60 | a28 | rocket motor | 12.00 | Horizontal | | 677794.28 | 1167178.14 | a29 | 37mm | 16.00 | Horizontal | | 677775.16 | 1167162.11 | a30 | 60mm | 12.00 | Vertical | | 677767.82 | 1167173.71 | a31 | MKIIHG | 8.00 | Vertical | | 677763.33 | 1167167.94 | a32 | 2.36" rocket | 6.00 | Vertical | | 677750.42 | 1167179.97 | a33 | 60mm | 6.00 | Horizontal | | 677756.51 | 1167195.77 | a34 | 60mm | 6.00 | Vertical | | 677740.94 | 1167197.48 | a35 | MKIIHG | 4.00 | Horizontal | | 677741.04 | 1167180.67 | a36 | 37mm | 0.00 | Horizontal | | 677728.58 | 1167178.52 | a37 | 3 "stokes | 20.00 | Horizontal | | 677733.40 | 1167171.79 | a38 | 3 "stokes | 32.00 | Horizontal | | 677743.27 | 1167161.79 | a39 | 75mm | 30.00 | Horizontal | | 677758.76 | 1167148.27 | a40 | 81mm | 25.00 | 45 degrees | Contract W912DY-04-D-0011, TO 004 March 2006 TETRATECH SC, INC. C-1 | | TAB | LE 1 SEED ITE | MS OPEN TES | T GRID | | |-----------|------------|---------------|--------------|-----------|-------------| | X | Y | TARGET ID | ITEM | DEPTH(IN) | ORIENTATION | | 677697.46 | 1167163.21 | a41 | 75mm | 12.00 | Vertical | | 677699.23 | 1167155.70 | a42 | MKII HG | 0.00 | Horizontal | | 677700.11 | 1167144.91 | a43 | 75mm | 18.00 | 45 degrees | | 677715.77 | 1167137.08 | a44 | 37mm | 4.00 | 45 degrees | | 677715.85 | 1167112.69 | a45 | slap flare | 4.00 | Vertical | | 677706.94 | 1167104.36 | a46 | 105mm | 10.00 | Vertical | | 677693.62 | 1167134.69 | a47 | 81mm | 34.00 | Vertical | | 677683.47 | 1167133.54 | a48 | rocket motor | 12.00 | Vertical | | 677680.56 | 1167145.54 | a49 | 3 "stokes | 20.00 | Vertical | | 677674.37 | 1167119.69 | a50 | 37mm | 2.00 | Horizontal | | 677753.19 | 1167226.71 | NE | corner point | | | | 677651.45 | 1167138.05 | NW | corner point | | | | 677762.26 | 1167147.30 | M1 | mid point | T | | | 677728.18 | 1167117.92 | M2 | mid point | | | | 677685.25 | 1167167.49 | M3 | mid point | | | | 677719.52 | 1167196.53 | M4 | mid point | | | ### SEED ITEMS WOODED TEST GRID | Surveyed | Surveyed | Target | Item | Measured | Orientation | |--------------|---------------|--------|-----------------|-----------|-------------| | Easting (ft) | Northing (ft) | ID | Description | Depth(in) | | | 677856.4 | 1167299 | 1 | 18" rebar | 0 | Horizontal | | 677852.3 | 1167317 | 2 | 6x6 plate | 0 | Horizontal | | 677833.1 | 1167325 | 3 | 12" wire | 0 | Horizontal | | 677829.6 | 1167337 | 4 | 3x3metal plate | 0 | Horizontal | | 677846.3 | 1167331 | 5 | (3) 8" wires | 0 | Horizontal | | 677839.3 | 1167347 | 6 | 3x3 metal plate | 0 | Horizontal | | 677861.6 | 1167342 | 7 | 4x4 scrap metal | 0 | Horizontal | | 677866.7 | 1167353 | 8 | 4x2 scrap metal | 0 | Horizontal | | 677885.9 | 1167336 | 9 | 3x2 srap metal | 0 | Horizontal | | 677874.9 | 1167318 | 10 | 3x2 scrap metal | 0 | Horizontal | | 677851.8 | 1167344 | 11 | 5x5 scrap metal | 0 | Horizontal | | | | | | | | Contract W912DY-04-D-0011, TO 004 March 2006 TETRATECHEC, INC. C-2 Final Geophysical Prove-Out Letter Report MEC Removal Action, Bains Gap Fort McClellan, Alabama | CORNER POINTS TEST GRID 1 (ft) | NTS TEST GF | (III) I (III) | |--------------------------------|-------------|---------------| | CORNER POINT | X | Y | | SW | 677693.96 | 1167088.76 | | SE | 677796.54 | 1167176.86 | | NE | 677753.19 | 1167226.71 | | NW | 677651.45 | 1167138.05 | | MI | 677762.26 | 1167147.30 | | M2 | 677728.18 | 1167117.92 | | M3 | 677685.25 | 1167167.49 | | M4 | 677719.52 | 1167196.53 | Test Grid 2 (ft) | Corner Point | X ft | Y ft | |--------------|----------|-----------| | SW | 677825.1 | 1167325.0 | | SE | 677868.1 | 1167300.0 | | NE | 677911.9 | 1167375.0 | | NW | 0.698719 | 1167401.0 | 6.3 Final Geophysical Prove-Out Letter Report MEC Removal Action, Bains Gap Fort McClellan, Alabama Estimated Depth 15.7 42.6 22.8 15.5 22.5 12.9 12.4 16.6 14.4 19.3 36.1 47.7 20.7 8.9 7.9 6.0 0 0 0 0 TETRATECHICIN Top Coil C1 660 607.5 11.8 19.3 33.2 2.2 6.3 84 3.5 5.1 2.9 8.5 8.3 9 Bottom C2 660 F 593 4.3 4.3 8 6.1 9.3 14 4 Bottom C2 366 1079.5 119.5 49.7 29.2 32.9 40.6 22.7 8.3 9.1 20.8 28.4 5.4 5.4 Bottom C2 216 1512.9 61.5 69.3 18.7 43.9 50.9 12.8 13.8 33.9 75 Interpreted Position Error (ft 2.01 0.45 0.92 0.46 0.17 0.70 1.70 0.55 0.24 0.49 0.48 1.01 Northing (ft) 167132.76 Interpreted 1167164.26 167173.56 167187.69 167174.78 167179.06 167167.27 167168.58 167156.79 167155.56 1167137.30 167132.85 167117.77 167146.21 1167098.17 167107.95 167112.93 1167135.29 167128.39 167119.01 1167141.67 167152.50 167151.81 167216.98 167207.28 167195.35 Interpreted Easting (ft) 677729.10 677743.16 677718.96 6777719.49 677723.42 6777734.95 677746.05 677726,48 6777719.49 677694.42 677708.92 677666.34 877706.65 577753.12 677697.59 677708.22 677735.56 577718.47 677688.91 677703.48 677692.41 877681.68 577673.54 677680.79 877764.92 377771.82 2 Orientation 45 degrees 45 degrees 45 degrees 45 degrees 45 degrees Horizontal Vertical Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Vertical Anti Tank Mine rocket motor 2.36 rocket 2.36 rocket MKII HG 37mm 60mm MKII HG slap flare 105mm 37mm 3 stokes 3 stokes MKII HG 75mm 60mm Item Measured Depth(ft) 16 32 30 12 Contract W912DY-04-D-0011, TO 004 Vorthing (ft) 1167173.14 1167188.12 1167175.99 1167179.32 1167167.69 1167169.03 1167156.66 1167155.03 1167136.92 1167132.67 1167118.37 1167146.36 1167097.99 1167108.58 1167113.24 1167133.61 1167128.25 1167118.85 1167132.86 1167141.88 1167152.03 1167151.98 1167216.57 1167208.06 1167196.19 Surveved 1167164.58 Easting (ft) 677723.37 Surveyed 677719.73 677721.10 677730.10 677709.18 677673.49 677666.45 677680.90 677706.20 677753.84 677765.13 677771.70 677699.94 577708.37 677735.00 677735.62 677745.30 677743.41 677726.67 677718.25 677719.58 677688.23 677704.27 677694.61 677691.87 677681.35 March 2006 Open 93 99 a11 a13 **a14** a15 a16 a17 a20 a21 a22 823 824 a2 84 85 98 a7 88 TABLE 3 RTS OPEN GRID RESULTS Final Geophysical Prove-Out Letter Report MEC Removal Action, Bains Gap Fort McClellan, Alabama | | | | | | | | | | | * | NOT INTO | Sildily Class | ama | |-----|------------|------------|----|--------------|------------|-----------|------------|------|-------|-------|----------|---------------|------| | 827 | 677771.95 | 1167190.79 | 26 | 2.36 rocket | Horizontal | 677772.05 | 1167189.35 | 1.45 | 11.4 | 7.5 | 2.8 | 2.7 | 3.9 | | a28 | 677781.41 | 1167187.60 | 12 | rocket motor | Horizontal | 677780.90 | 1167187.01 | 0.78 | 12.3 | 8.5 | 4.4 | 5.2 | 19.2 | | a29 | 677794.28 | 1167178.14 | 16 | 37mm | Horizontal | 677793.31 | 1167178.28 | 0.98 | 23.7 | 17.4 | 12 | 13.1 | 12.9 | | a30 | 677775.16 | 1167162.11 | 12 | 60mm | Vertical | 677774.99 | 1167161.28 | 0.85 | 22 | 15.2 | 7.7 | 9.2 | 20 | | a31 | 677767.82 | 1167173,71 | 80 | MKII HG | Vertical | 677767.31 | 1167173.43 | 0.58 | 30.5 | 19.7 | 7.5 | 8.1 | 11.9 | | a32 | 677763.33 | 1167167.94 | 9 | 2.36 rocket | Vertical | 677762.73 |
1167167.44 | 0.78 | 99.1 | 74.1 | 47.8 | 55.6 | 18 | | a33 | 677750.42 | 1167179.97 | 9 | 60mm | Horizontal | 677750.33 | 1167179.41 | 0.57 | 56.8 | 38.8 | 19.7 | 17.9 | 0 | | a34 | 677756.51 | 1167195.77 | 9 | 60mm | Vertical | 677755.62 | 1167195.90 | 0.90 | 83.2 | 62.8 | 31.4 | 34.4 | 13.1 | | a35 | 677740.94 | 1167197.48 | 4 | MKII HG | Horizontal | 677740.37 | 1167197.50 | 0.57 | 12.9 | 8.3 | 2.6 | 2.9 | 16.2 | | a36 | 677741.04 | 1167180.67 | 0 | 37mm | Horizontal | 677740.89 | 1167180.37 | 0.33 | 48.7 | 30.8 | 15.3 | 12.8 | 0 | | a37 | 677728.58 | 1167178.52 | 20 | 3 stokes | Horizontal | 677729.10 | 1167179.06 | 0.75 | 9'08 | 53.3 | 28 | 29 | 8.7 | | a38 | 677733,40 | 1167171.79 | 32 | 3 stokes | Horizontal | 677732.85 | 1167171.20 | 0.80 | 21.6 | 14.5 | 6.5 | 9.6 | 43.7 | | a39 | 677743.27 | 1167161.79 | 30 | 75mm | Horizontal | 677742.99 | 1167161.59 | 0.35 | 6 | 5.9 | 2.5 | 3.6 | 37.6 | | a40 | 677758.76 | 1167148.27 | 25 | 81mm | 45 degrees | 677758.36 | 1167148.22 | 0.40 | 29.3 | 20.5 | 12 | 15.5 | 26.7 | | 841 | 677697.46 | 1167163.21 | 12 | 75mm | Vertical | 677697.59 | 1167164.26 | 1.06 | 44.7 | 31.9 | 18.6 | 22.6 | 21.5 | | a42 | 677699.23 | 1167155.70 | 0 | MKII HG | Horizontal | 677698.66 | 1167155.65 | 0.57 | 24.8 | 15.2 | 6.1 | 5.7 | 0 | | 843 | 677700.11 | 1167144.91 | 18 | 75mm | 45 degrees | 99'669'29 | 1167144.47 | 0.63 | 30.2 | 20 | 10.9 | 13.3 | 22.2 | | 844 | 677715.77 | 1167137.08 | 4 | 37mm | 45 degrees | 677715.07 | 1167136.57 | 0.87 | 22.5 | 14.8 | 7.8 | 7.7 | 8.4 | | 845 | 6777715.85 | 1167112.69 | 4 | slap flare | Vertical | 677714.72 | 1167112.67 | 1.13 | 7.1 | 4.8 | 2.1 | 3.9 | 89.8 | | 946 | 677706.94 | 1167104.36 | c | 105mm | Vertical | 677706.38 | 1167104.19 | 0.58 | 20.9 | 15.1 | 8.5 | 11.4 | 30.3 | | 847 | 677693.62 | 1167134.69 | 34 | 81mm | Vertical | 677692.93 | 1167135.12 | 0.81 | 203.7 | 154.3 | 87.9 | 98.6 | 15.1 | | a48 | 677683.47 | 1167133.54 | 12 | rocket motor | Vertical | 677683.23 | 1167133.55 | 0.24 | 52.2 | 40.1 | 23.5 | 31.6 | 30.7 | | 849 | 677680.56 | 1167145.54 | 20 | 3 stokes | Vertical | 677679.54 | 1167145.64 | 1.03 | 27.4 | 15.3 | 4.4 | 4.3 | 3.1 | | a50 | 677674.37 | 1167119.69 | 2 | 37mm | Horizontal | 677674.23 | 1167119.31 | 0.41 | 48.5 | 33.9 | 18.6 | 16 | 0 | | | | | | | | | | | | | | | | 2.37 0.11 0.72 max, error min error avg error Contract W912DY-04-D-0011, TO 004 March 2006 C-S Final Geophysical Prove-Out Letter Report MEC Removal Action, Bains Gap Fort McClellan, Alabama | Interpreted | Position | Error (ft) | 1.01 | 0.39 | 0.08 | 0.50 | 1.03 | 0.64 | 0.34 | 0.44 | 0.65 | 0.74 | 0.82 | 1.03 | 0.08 | 09.0 | |-------------|-------------|---------------|-------------|-------------|-------------|----------------|--------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|------------|-----------|-----------| | | Interpreted | Northing (ft) | 1167299.212 | 1167317 | 1167325.182 | 1167337,633 | 1167331.174 | 1167347,594 | 1167342.436 | 1167353.82 | 1167336.388 | 1167317,533 | 1167343.859 | max, error | min error | avg error | | | Interpreted | Easting (ft) | 677857.38 | 677852.64 | 677833.07 | 677829.87 | 677847.29 | 677838.94 | 677861.53 | 677866.87 | 677885.72 | 677874.16 | 677851.22 | | | | | | Orientation | | Horizontal | | | | | Item | Description | 18" rebar | 6x6 plate | 12" wire | 3x3metal plate | (3) 8" wires | 3x3 metal plate | 4x4 scrap metal | 4x2 scrap metal | 3x2 srap metal | 3x2 scrap metal | 5x5 scrap metal | | | | | | Measured | Depth(ft) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Surveyed | Northing (ft) | 1167299.054 | 1167316.762 | 1167325.107 | 1167337.205 | 1167330.891 | 1167347.06 | 1167342.103 | 1167353.4 | 1167335.748 | 1167317.79 | 1167344.482 | | | | | | Surveyed | Easting (ft) | 677856.373 | 677852.327 | 677833.077 | 677829.618 | 677846.299 | 677839.297 | 677861.585 | 677866.73 | 677885.853 | 677874.854 | 677851.751 | | | | | Wooded | Target | <u>0</u> | - | 2 | 8 | 4 | S | 9 | 7 | 8 | o | 10 | 7 | | | | Contract W912DY-04-D-0011, TO 004 March 2006 950 # APPENDIX D STATIC TEST Contract W912DY-04-D-0011, TO 004 March 2006 TETRATECH EC, INC. D-1 # APPENDIX E SIX LINE TEST Contract W912DY-04-D-0011, TO 004 March 2006 E-1 Final Geophysical Prove-Out Letter Report MEC Removal Action, Bains Gap Fort McClellan, Alabama Contract W912DY-04-D-0011, TO 004 March 2006 E-2 ## APPENDIX F OPEN AND WOODED TEST GRID AS-BUILT DRAWINGS TETRATECH EC, INC. Contract W912DY-04-D-0011, TO 004 March 2006 F-2 # APPENDIX G RTS AND CONSTELLATION GRID MAPS Contract W912DY-04-D-0011, TO 004 March 2006 TŁ G-2 This page intentionally left blank.